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Propagation of a pressure step in a granular material: The role of wall friction
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More than one century ago Jansg@n Ver. Dtsch. Ing.39, 1045(1895] proposed an elegant model to
describe the pressure variations in a vertical container filled with a granular material at rest. In the present
paper we build up a dynamical version of this model. We analyze the propagation of a pressure front in a dry
granular medium inside a cylinder, taking into account the solid friction that exists between the grains and the
cylinder walls. Assuming that the granular material under pressure has a linear elastic behavior, we derive a
linear partial differential equation for the pressure field. Using the Green function method, we determine
analytically the behavior of the granular medium undergoing a pressure step. We find in particular that a
pressure front propagates at speedhe speed of sound in the granular matefwaithin the linear elasticity
framework,c is a constant Due to friction at the cylinder walls, the front amplitude decays exponentially. We
also show that a stopping front starts after a certain time lag and propagates behind the pressure front, at a
speed larger thao. When reached by this second front, the grains stop and do not move any more. The final
pressure profile that we predict when all grains have eventually stopped is similar, but not identical, to the
pressure profile determined by the Janssen m¢8&063-651X97)10905-9

PACS numbgs): 83.70.Fn, 46.16-z, 46.30.Pa, 83.50.Tq

[. INTRODUCTION a stopping front progressively invades the container, any
slice of granular material coming eventually to rest. The final
Granular materials are ubiquitous in our daily lives andstate of the system turns out to be similar, but not identical,
play an important role in many industrial and geophysicalto Janssen’s state. The paper ends with some concluding re-
processe$l,2]. Over the last decades, many new ideas andnarks(Sec. V).
techniques have been developed to understand the excep-
fcional prop_erties displayed by granglar systdi®s7]. Even Il. THE JANSSEN MODEL
in the resting state, granular materials have unusual proper-
ties. Consider, for instance, a tall cylindrical container filled Let us review and discuss the Janssen mfglelConsider
from the top with granular materials up to a heightFor  a vertical cylinder of radiuR filled with grains at rest. The
h very small, the pressurp at the base of the container granular medium is described by a continuum theory, and the
varies linearly withh, as would be the case for a normal aim of the model is to determine the pressure inside the
fluid. However, the pressune does not increase indefinitely material(induced by gravityas a function of deptk (where
as h increases. Instead, for a sufficiently tall colunm, thex axis is the cylinder axis, oriented downwartliote that
reaches a constant value that is independeht dhis easily  the definition of “pressure” in a granular medium is tricky.
observed phenomenon was explained by Janssen a long timestress-induced birefringence techniqi@—-12 allows one
ago[8]: because of static friction between the grains and théo observe the distribution of forces within a compressed
sides of the container, the container walls support the weighgranular material. This technique shows a network of linear
of the extra mass placed on the top of the column. stress-transmitting paths, and regions with nearly no stress:
In this article we shall build up a dynamical version of the the spatial fluctuations of the pressure are large. Moreover,
Janssen model. In order to do so, we shall consider a hormany linear paths are parallel to some preferred directions:
zontal cylinder filled with a granular material. At a given pressure is anisotropic. In order to take this anisotropy into
time, sayt=0, we shall impose a strong pressure at one ené@&ccount in the Janssen model, one defines two pressures,
of the cylinder, and maintain it far>0. We study how this assumed to be constant over a horizontal plaméx) acts
pressure step propagates inside the cylinder. Our aim is ton the horizontal surface between two grain slic@grain
find out how the acoustic response to the pressure step #lice is made of the grains located between two horizontal
influenced by wall friction. In particular, we shall analyze planes, andp.(x) acts between the vertical surfaces of slices
how a steady Janssen-like pressure profile is reached f@nd the cylinder inner sides. Because of the pressure anisot-
t— + . The phenomenon studied in this article is somewhatopy, pg(x) and p.(x) are a priori different. In order to
analogous to the “water hammer” pressure developed alongimplify the problem, one assumes that these two pressures
a pipe by sudden closing of a té9]. The paper is organized are proportionalp.(x) =Kpy(x), whereK is a constant. Let
as follows. In Sec. Il we recall and discuss the Janssems now determingg(x) by writing that a thin grain slice of
model. Our dynamical model is then presented in Sec. lll. Irthicknessdx and at deptix is at rest. As shown in Fig. 1, the
Sec. IV we solve the model analytically and show that theforces acting on this slice ar@ its weightw= 7R?dxpg,
pressure step propagates inside the cylinder at the speed wherep is the grain densitfassumed to be constardand
sound of the bulk granular material. In Sec. V we show thag the acceleration of gravity(ii) the two pressure forces
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Equation(2) can be rewritten as

- x=0 pg(x =0)
dpg(X) = Pg(x)
“ax T TPY (©)]
I ’ where the characteristic lengkhis given by
N R
C2uK”

The lengthA will play an important role throughout this
article. In practice, for our problem, the order of magnitude
of A isA~0.1 m(as shown in Sec. l]l Since the pressure in
the material is inhomogeneous on the scale of a few grains
but becomes homogeneous on the scale of, say, 50 or so
grains,\ is a relevant length scale if the grain size is smaller
than 1 mm. Equatio3) admits the solution

dx

Pg(x) =Apg+[pg<x=0>—xpg]exp( - %) T

wherepy(x=0) is the pressure that we may impose at the
top of the granular media. Equatidd) indicates that the
pressure reaches exponentially the limit valyeg, with a
damping length given b¥. Whenx is larger than~ 3\, the

FIG. 1. In a vertical cylinder filled with grains at rest, the pres- Pressure no longer varies because the cylinder sides support
surepy(x) is calculated by writing the equilibrium of a grain slice the extra weight of grains. This situation is very different
of thicknessdx at depthx. The forces acting on the slice are its from the case of a liquid, where the pressure increases lin-
weightw, the vertical pressure forcgg(x) andpy(x+dx), and the ~ €arly with depth. Note that the limit pressukgg and the
solid static frictionfy;c(x) with the cylinder walls. damping length\ are independent of both the pressure im-
posed ak=0 and the container height. In practigeK is of

Y

X axis

acting on top and bottom of the slice order of 0.1[13], so that\ ~5R. The pressure distribution of
the Janssen model has been tested by different experiments
sz[pg(x)—pg(x+ dx)], [14,19. In general, the pressure measured as a function of

the depth has a shape similar to the Janssen prepg(cg.
(iii ) the solid static frictionfs;.(x) of grains on the cylinder Yet the value of the limit pressure at large depths can vary
sides. According to the laws of static frictiofy.(x) must  with an amplitude as large as 50%, and the pressure is influ-

satisfy the double inequality enced by the way the grains are poured in the cylinder and
by the formation of stress arches supported by the container
= ufp()<fric(¥) <+ ufy(x), walls [16]. More details about these experiments can be

found in Ref.[13].
where u is the friction coefficient between grains and the  we now generalize the Janssen model by relaxing the
container sides, antl,(x) the pressure force of the slice on assumptions that grains were poured in the cylinder from the
the sides: fy(x)=27Rdxp(x). In order to determine top and are about to slide down. The friction forfgg(x) is
fric(X) we assume that the container has been filled from th@o longer given by Eq.(1), but must only verify
top. When grains were poured, they moved downward and- pfp=<frc<+uf,, and Eq.(3) for the pressurgy(x) is
the (dynamig friction force acted upward. We assume thatnow replaced by
when grains stopped, this force kept the same direction, and
that grains at rest are about to slide down: friction is oriented Pg(X) _ dpg(X) Pg(X)
upward, and its magnitude has the maximum value allowed N Tg T—pgs + N
by static friction; if grains were slightly pushed downward,
friction would not be able to increase any more and grainsThis generalization allows us to imagine new experiments
would start to move. The friction force on the grain slice iswhere the pressure is very different from the Janssen pres-

thus given by sure profilg/17]. For instance, let us assume that we have an
experimental setup which allows us to fill the container from
fric(X) = — ufp(X) = — u27RAXKpy(X). (1)  the bottom by pushing up the grains; during this filling fric-

tion at the sides acts downward. If we suppose that when
The slice being at rest, the sum of the forces applied to ithey stop, grains are about to slide up, we dgk(x)
must be equal to zero, =+ ufy(x), and

d X
mR%dxpg— szdxd—F:f—szdepgzo. (2) Pg(X)= —)\pg+[pg(X=O)+)\pg]eX[< +
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compressible intion: Fot) i i
granﬁlar aterial description; for exampleg(r,t) is the pressure of the grain
slice whose position was att=0. This pressurg acts on
- - the vertical surfaces between two slices of the granular me-
x X X X N *X X x X . . . .
I x5 b L x semiinfinite dium (it was denotedy, in Sec. I). Let us call the cylinder
2R x x
x X

x X% K" cylinder axis thex axis; we takex=0 at the compressed end and
- x>0 in the semi-infinite container. We neglect the radial
T dependence of pressure and velocity and assume that the
solid friction ‘ velocity is parallel to thex axis, so that pressure and velocity
on walls are simply given by two scalar functions of two variables:
x axis p(x,t) and v(x,t). By packing grains inside the cylinder
+ > before the experiment begins, we get a pressure
p(x=0,t<0). Experimentally, this initial pressure may not
FIG. 2. The water hammer model for a granular material: atbe reproducible. Here, we assume that the presgginen-
t=0, we apply a pressure step at the end of the horizontal cylindefposed at the cylinder end=0 for t=0 is much larger than
the initial pressure, so that we can neglect it and get as first
Pressure increases exponentially with depttbecause the initial condition in our modelp(x>0t=0)=0. Because
cylinder sides push grains downward. Another example igrains are at rest before the experiment begins, a second
the experiment done in a cylinder with a friction coefficient initial condition isv (x>0,t=0)=0.
My N its upper part, and a larger friction coefficieant in its In order to describe the dynamics of grains, we first write
lower part, so that;<\,. We assume that the container the momentum conservation law for a grain slice located
was filled from the top, that grains at rest are about to sliddetweenx and x+dx. Two forces act on the slice: a solid
down, and thatpy(x=0)<A pg. When the deptlx in-  friction force and pressure forcégravity being neglected
creases, the pressure first increases in the upper part of tiitne pressure forces act on the two vertical sides of the slice,
cylinder frompy(x=0) to a first limit valuex jpog, and then  and their sum is equal to
decreases exponentially in the lower part to a second limit ,
value\,pg. These two examples show pressure distributions TRIP(X,t) —p(x+dxt)],

that are qualitatively very different from the Janssen one.

This underlines both the richness and the complexity of thdVhereR is the cylinder radius. When the slice is moving, the
physics that mix continuum media and solid friction. dynamlc friction force of grains on the cylinder sides has a
magnitude equal ta.f,, wheref, is the pressure force ex-

erted by the grain slice on the container sides anés a

X % X

ll. THE “"WATER HAMMER” MODEL friction coefficient assumed to be independent of the speed
FOR A GRANULAR MATERIAL v. Moreover, we assume that this coefficient is equal to the
A. The water hammer model static friction coefficient of Sec. Il. Introducing a new dy-

) ] ~ . . namic friction coefficient is easy, but would make our equa-
The Janssen model described in Sec. Il was intrinsicallfjons more complicated and would not qualitatively change
static. We now want to build up a dynamical version of this g, predictions. The pressure forcé, is equal to
model in order to show how a Janssen pressure profile Ca RdxKp where the constark reflects the pressure an-
actually be reached. Making a model of a granular mate”aﬂsotropy of the granular mediurfsee Sec. )l Since grains
being poured inside a vertical silo is complicated; we shally,o pushed towards the positivalirection,v is positive and

discuss such a filling in the conclusion of the present papefe sign of the friction force is negative. The dynamic fric-
(Sec. V). In this part of the article, let us consider the tion force acting on the slice is thus equal to

slightly different and simpler situation shown in Fig. 2. We

first take a cylinder already filled with closely packed grains. — u2mwRdxKp

We assume that the granular material is dry, and that there is

no adhesion of grains to the container walls. Yet there igf the slice is at rest, the friction force becomes static, and
solid friction between the grains and these walls. Since wegan take any value between—u27RdxKp and
are not primarily interested in gravitational effects, we set thet ;,277RdxKp The consequences of this nonlinear behavior
cylinder horizontally. Before the experiment begins, grainsof the friction force will be studied in detail below.

are at rest. At timeé=0, we strongly increase the pressure of  According to the momentum conservation law, in the
grains at one end of the cylinder, and thereafter keep corelastic approximatiofsee belowand when the slice is mov-
stant the pressure at this end. In order to avoid complicateghg, we have

reflections on the other cylinder end, we assume that the

container is semi-infinite. The pressure step propagation 5 dv ., 0P

studied in this article is analogous to the water hammer phe- TR dxp —- = — 7R dx - —27RdxuKp,

nomenon that happens in a pipe when a tap is suddenly

closed(9]. where p is the grain density, assumed to be constant. By

As in the Janssen model, we assume that the granulgfividing the above equation byR?dx, we get
material can be described by a continuum theory. Let us

denote byp(r,t) andov(r,t) the pressure and velocity of W dp p ©
grains at positiorf and timet. We choose the Lagrangian Pat —
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where\ is given byh =R/(2uK) as in Sec. Il. Note that Eq. B. Orders of magnitude of the physical phenomena

(5_) is also valid for a gra_in slice_ b_efore it starts to move: in Equations(7) and(5), along with their initial and bound-

this casep=0 and there is no friction between the slice and gy conditions, will be analytically solved in Sec. IV. Let us

the wall. ) . . _first show that it is possible to determiaepriori most of the
Another differential equation comes from the assumption,gers of magnitude of the physical phenomena. Equations

that the granular medium under pressure has an elastic rez) and(s), as well as the initial conditions and the boundary

sponse. A grain slice of initial volumé will have a smaller condition, depend on the four physical parameters

volumeV+AV for p>0 with AV given by p, C, \, andpo,. We can thus define four dimensionless

quantities
AV\™
:(_V) ' (6) i t*:Et *ZB and *:ﬁ
N’ oo P Po’ Y T

mi o

where the elastic modulug and the exponenin are as- |t e rewrite Eqs.(7) and (5) in terms of the above dimen-
sumed to be constant. This elastic model is valid if two con-,

ditions are fulfilled: First, the grains must be sufficiently sionless quantities, we get

packed before we impose the pressure step so that we can P Jo*
neglect the special behaviors displayed by granular materials v P
when the grains are barely touchif@. Secondly, at=0, at* ax*

we must keedAV|<V, i.e., p<E; this will be the case in

the solution obtained in Sec. IV. The exact value of the exand

ponentm appearing in Eq(6) has been the subject of many

studies. By assuming that the grain surface is smooth and av* ap*
that the contacts between grains are Hertzian, one obtains oxE ot
m=3/2[18]. Yet experiment$19] have shown that a better
exponent to fit the data im=2. Various theoretical expla- , N "
naﬁons for this value have been proposed rece[r:lIB/,Z(F]). al*ong* with ;ch_e 'nlt'al conditionsp™ (x* >0,t* =0)=0 and
Since our aim in the present paper is to study the influence df* (X* >O’t* =0)=0, and t_he l_ooundary cqndmon
wall friction on the acoustic response of the material, we willP (X. =0.t 2.0): 1. These dimensionless equations and
make the simplest choicep=1. By differentiating Eq.(6) conditions define a new problem that does not depend on any

(written for a thin grain slice of thickneskx) with respect to phhyscljc;al pa(arr}eter anybrlnore. Any guanftlt)r/] of th de SOIlthllonbOf
time, we get another differential equation describing thet Is dimensionless problem must be of the order of 1, be-
grain dynamics, cause the only constraint is the bqundary condition
p* (x*=0t*=0)=1. Moreover, the solution of the model
with dimensions can be found easily from the solution of the
c?_v_ 1 <9_p 7 dimensionless problem. For instance, the presp(xegt) is
X ' ™ given by p(x,t)=pop* (X/\,tc/\). Hence the orders of

E ot
magnitude of the physical quantities in the model with di-

To summarize, our model leads to two coupled differentialmhensIons are.the foIIO\r/]vmg (()jnes.fThe orde(rj of rpat?nltudg of
equations(7) and (5), along with the initial conditions the Pressure 19~ po, the order o “?agn"u eo .t € grain
p(x>0,t=0)=0 andv(x>0,t=0)=0, and the boundary spe_ed i®~po/pc, the order of magnitude of thg distance on
condition p(x=0,t=0)=p,. Note that in the absence of V.Vh'Ch P _andv vary 1 X~A, the prder of magnlt_ude of the
wall friction (1/A=0), Eq. (5) reduces to pdv/dt t|rr(1je dufrmg Wh_ICZp a?dﬁ ijw l'StNMC’ afnd fma_lly tlhe .
= —gp/dx. By combining this expression and E(), we Zrl f;t{;“pa%r;'ég‘ e of the displacement of a grain slice Is
; o .
obtain For usual granular materials, the orders of magnitude of
p and ¢ are given byp~2x10® kg/m® and c~5x 107
?p ~d%p . ;
T_EZL m/s [19,21]. Moreover, \ is of the order of R since A
at* Ix* =R/(2uK) and the order of magnitude ¢fK is 0.1 (cf.
Sec. I). As shown later, one has to chooRein the range
The solutions of this equation are simple acoustic waved —10 cm for practical reasons. So the order of magnitude of
propagating at the speed of sourd (E/p)l/Z_ The fact that A is also determineds~0.1 m. The order of magnitude of
the speed of sound is a constant is a direct consequence fe time of variation is then given ly~0.2 ms. The ampli-
the linear assumptionn{=1) in Eq. (6). In the granular tude p, of the pressure step can be varied within a wide
medium undergoing the pressure sf&p the pressure front range, however. One has to kegp<E=pc?~10° Pa, and
propagates at speed with a constant amplitude; grains py must be larger than a minimum value: the magnitude of
ahead of the front are at rest; the pressure in the grains bé#ae friction force was determined because grains were mov-
hind the front is constant and equal pg, and these grains ing. This is the case provided that the minimum grain dis-
move at a uniform and constant speed. As we shall see, thdacemeniAl ., is larger than the typical size of microscopic
introduction of friction significantly complicates the resolu- contacts between solids or grains, i.e., a few micrometers
tion of the problem, and leads to new phenomena. [22]. Hence the condition

p
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X Prmin will mostly try to emphasize the physical meaning of the
Al in~ p7>5 pm. methods we use; detailed mathematical calculations are pre-

sented in Appendixes A-C.

The analytical solution of our modéBec. I\V) will show that
Pmin~Po/50. So we must havp,>10 atm. A good choice
is po~10-20 atm: it fulfills the above two inequalities, and  As a first step towards the resolution of probléaj, let us
should be easily feasible in practice. The order of magnitudstudy the response to an external excitation of grains in an
of the grain speed is than~1 m/s, and the order of mag- infinite cylinder (i.e., a cylinder extended in both positive
nitude of the displacement of a slice under the prespyiie  and negativex directiong. The external excitation is as fol-
Al~0.3 mm. Grain motions along theaxis are small and lows: let us assume that on a grain slice of thickrssnd
probably difficult to measure. Measurements should focus oat positionx, we can exert an external forééx,t)dx at time

the propagation of the pressure step, created, for instance, byWe assume that fdr<0 the forcef(x,t) is equal to zero;
the quick opening of a pressurized gas bottle. Fast captotherefore the grains are at redor t<<0) and p(x,t<0)
should measure pressure on the outside cylinder surface;0. The pressure in the material is denotedpyfor rea-

1. Response to an external excitation

along a distance of 0.5—-1 [23]. sons that will soon become clear. Because of the external
force fort=0, grains start to move and pressure changes.
IV. ANALYTICAL RESOLUTION—PROPAGATION The momentum conservation law, which led to E5), now
OF A PRESSURE FRONT yields
A. Analytical resolution 3_0_ B JPa B & f
In this subsection we shall analytically calculate the pres- P ot ox N wR*

surep and the speed of grains in a semi-infinite cylinder

on which we impose a pressure stepxat0 andt=0; we  Equation(8) then becomes

shall solve the two partial differential equatio(® and (5).

We shall first determine the functiop(x,t), and then 1 3°pa °pa 1 dpa

v(x,t) will easily be calculated by using E¢7). Combining c2 a2 ax2 N ax =A, (12)
Egs.(7) and(5) leads to

whereA(x,t)=— (1/7R?)f/dx is called the external exci-

1% ’p 1ap . .
_ _-F_ tation. We want to calculatgpa(x,t) as a function of
2H wE N O ®

A(x,t). Since Eq.(12) is a linear equation with constant
- coefficients, its solutiomp, is given by[25]
where c=(E/p)Y2 Moreover, p(x,t) must satisfy the

boundary condition pa(X,t)=A(X,t)* G(x,t),
p(x=0t=0)=p,, (9 where the symbot denotes a convolution product; the func-
tion G(x,t) is called the Green function of E@8). If the
and the following two initial conditions: excitation were proportional to an impulsive forcexat 0
andt=0, i.e.,A(x,t) =ad(x) 6(t) whereé is the Dirac delta
p(x>0t=0)=0, (100 function anda an arbitrary constant used so thathas the

correct dimension, then the pressure would be

ap
5 (x>01=0)=0. (11) pa(x,t)=[ad(x)8(t)]* G(x,t)=aG(x,t).

The initial condition(11) results from Eq(7) and the condi- The (_sreen fungtiorG(x,t) is thus propprtiona_l to the pres-
tion v(x>0t=0)=0. The resolution of the differential sure in the grains when we apply an impulsive force to the

equation(8) with the three condition&9)—(11) will be called matgrial. The calculgtion of this pressure can .be QOne by a
problem (P). Fourier transform with respect ta This calculation is pre-

Note that our central equatici8) is somewhat different sented in Appendix A. We find that the Green function of
from the well-known telegraphist's equati¢84], in which Eq. (8) is given by
the termap/dx is replaced byp/at. >

In order to solve probleniP), we will proceed in three G(x.t)= c 0(ct—|x|)ex;{ _ L)\] ( ct—Xx )

. . . ] 0 ’

successive steps. By using the Green function method, we 2 2\ 2\
will calculate the behavior of grains under an applied exter-
nal excitation. In a second step, this behavior will allow us towhereJy is a Bessel function of the first kif@6], andé the
solve the Cauchy problem for the pressure inside a granulddeaviside unit step function. Note that since the Bessel func-
medium in an infinite cylinder. The last step will be to solve tion J, is oscillatory, the Green functio®(x,t) takes both
problem (P) by using the solution of the Cauchy problem. positive and negative values. However, as we shall see later
We will not explain all the mathematical details of our cal- (in Sec. \}, the physical solutiorp(x,t) of problem(P) is
culations. We use standard methods of mathematical physdways positive(as it should be in a noncohesive granular
ics; rigorous explanations can be found in R¢st,25. We  materia).
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2. The Cauchy problem for the pressure wherep, is a solution of Eq.(12) which includesA, and

In a second step towards the resolution of prob{®mlet ~ Pc IS @ solution of Eq(8) which does not include any exci-
us solve the Cauchy problem for the presspgein an infi-  t@tion. The last equation yields
nite cylinder filled with grains, by using the Green function 12 2 19
G. We consider that at time=0, we knowpc(x,t=0) and - g
o ative wi - c2at? X% N ox
its first derivative with respect to timegpc/dt)(x,t=0).
We want to calculatgp(x,t) for t=0, assuming that for 3 1 3
t=0 there is no external excitatiops(x,t) is then a solu- - - - -7 _ Pe i
: . , . 0(t)| = > 2 Pct 7 6(t) —=(x,t=0)
tion of Eq. (8). This calculation can be done by using the c” ot 9x° N X c dt
grain response to an external excitation, determined in the
preced!ng_paragraph. We are going to show that we can find 4 — &' (1)pe(x,t=0).
an excitationA(x,t) which is equal to zero whetw 0 but c
is singular fort=0, so that the solutiop,(x,t) of the ex-
ternal excitation problem will verify the following condi-
tions: (i) for t<0, A=0, the grains are at rest and (1 22 14

Pa

Sincepc is a solution of Eq(8), we simply get

pa(x,t)=0; (i) att=0, the excitationA changes instanta- | 37— -2~ 7T == /Pa
. ce ot X N 9X
neously the state of the grains from rest to a state character-
ized by the initial conditions of the Cauchy problem, 1 aPc
i.e., pa(x,t=0")=pc(x,t=0") and @pa/dx)(x,t=0") =2 S0 (xt=0)+ 8" ()pc(x,t=0) .

=(dpc/ax)(x,t=0"); and (i) for t>0, pa(x,t)
=pc(x,t) (indeed, sinceA=0, both pressures verify the Hence the singular excitation we want to determine is given
same differential equation by

If we can find such an excitatioA, the solution of the
Cauchy problem fot>0 will be equal to the solution of the
external excitation problem, which can be calculated by a
convolution product.

1 dpc
A(x,t)= ?[ 5(t)7(x,t= 0)+ ' (t)pc(x,t=0)

Let us determine the excitatioh(x,t). We must have The solution of the Cauchy problem for0 is equal to the
convolution product oA by the Green functios(x,t) cal-
Pa(X,t)=6(t)pc(X,t), culated in the preceding paragraph,

|

Y 2\

1 dPc c
Pe(X,1=0)=A(X,t)* G(X,1)= 2 5(t)7(x,t=0)+5’(t)pc(x,t=0) * > 0(ct—|x|)exp{ —

The calculation of this convolution product is presented in Appendix B. We find that the solution of the Cauchy problem is
given by

!

0 1 ><+ctd dpc 0 x'=x 3 Vet2—(x' —x)?
> - g ’
P t=0)=50] 9 7 (X100exg 5= Jo 2\
ot [x+ct x' = x| J1((1/20) 62— (X =x)?)
-— dx' pc(x’,0)ex
AN Jx—ct Pel ) F< 2\ ) \/Cztz—(X'—X)2
1 ct ct
+ 5| Pc(x+ct, 0)ex o +pe(x—ct,0)ex ~ox | (13

wherelJ; is a Bessel function of the first kind6].

3. The analytical solution of problem (P)

We are now able to determine the presspife,t) that is the solution of problerP), by using the solution of the Cauchy
problem calculated in the preceding paragraph. Any particular choige-{or;t=0) and @pc/dt)(x,t=0) (wherex<0 and
x=0) generates a solutiopc(x,t) of Eqg. (8), the differential equation of problertP). For problem(P), let us look for a
solutionp(x,t) of the following kind:p(x,t) =k+ pc(x,t), wherek is a constantp andp¢ will be mathematically defined for
x both positive and negative, but only the paet0 of the functionp will have a physical meaning in our model. We must
determine the two functionpc(x,t=0), (dpc/dt)(x,t=0), and the constark in order thatp(x,t) fulfills the boundary
condition and the initial conditions of probler). Let us first consider the boundary condition: »at 0, the pressure
pc(x,t) of any solution of the Cauchy problem can be written
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pc(x=0t)=

1 ct ct
> pc(ct,0)ex N +pc(—ct,0)ex ~on

X'\ 1. (Vx| ot
X ex X Jo fdx

2\ 4N

If we impose that

X X
|f>c<x,t=0>exp(2A +pe(—xt= O)exp( 2)\)=o,

(14
and that
ﬁ(xt=0)ex;:< +—( X,t= 0)exp< )=O
at 2\ 2\ ’
(15

then we getpc(x=0,t)=0. In addition, we tak&=p,, and
the boundary conditionp(x=0t=0)=p, is fulfilled.
We still have to choose the functiongc(x,t=0) and
(dpc/at) (x,t=0) for x>0; the conditiong14) and(15) will

then determine these functions fo 0.

Now let us consider the two initial conditions. The first

condition p(x>0t=0)=0 is fulfiled if we choose
pPc(x>0t=0)=p(x>0t=0)—py= — po; then Eq.(14) im-

poses thap:(x<0t=0)= + pgexp(—x/\). The second ini-
tial condition (@p/dt)(x>0t=0)=0 is fulfilled if we

choose ¢pc/dt)(x>0t=0)=(gp/at)(x>0t=0)=0, and
then Eq.(15) imposes thatdpc/dt) (x<0t=0)=0. The so-
lution p(x,t) of problem(P) is then given by

1 ct
p(x,t=0)= p0+ pc(x+ct, O)exp(z)\ + pc(x—ct,0)
ct Cct (x+ct
Xex;{ AR Xictdx pc(x',0)
F{X —x) 1((L/20)Vet?—(x' —x) )
X ex
2\ Ve —(x" —x)?

(16)

where

X if 0
Po€X K T X<

if x>0.

pc(X,O):
~—Po

pc(x’ O)ex%
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1 J
Z—CJ dx’ ;C(x',O)exp(z)\)+—( x',0)
/ J(( 1/&)@)

+pc(—x' O)ex;( 2)\)

2t2

agreement found between the numerical integration and the
analytical solution is very goodthe difference being less
than1%).

B. Propagation of a pressure front

The solution(13) of the Cauchy problem shows that the
pressure at positior and timet is determined by the pres-
sure and pressure time derivative at all pointslocated
betweenx—ct and x+ct at timet’=0. The pressure at a
point x and timet cannot be influenced by the pressure and
its derivative at another poini(,t’) if this second point is
“outside the light cone” of the first one, i.e., if
|x—x'|>c|t—t’|. Hence, for a pressure step imposed at
x=0 andt=0 in a semi-infinite cylinder, we have

(<X—O
pX,tE—.

This result can be checked directly by using expres&l@n
Moreover, fort=x/c it is possible to simplify expression
(16) further. Calculations are presented in Appendix C, and
lead to

X X
p( X,1= E) = poexp( 2)\>

ct—x ct
cos 2)\ 5

Xfl g "(zct—x)Jl((ct/Z)\)\/l—zz)
x/ct 2c0s 2\ \/l—Zz .
(17)

This expression shows that(x,t=x/c)=pgexp(—x/2\): a
pressure front is generated by the step we impose=al,
and propagates in the positive direction at the speed of
soundc. When the front arrives at a given poixtthe pres-
sure jumps from 0 t@yexp(—x/2\). Hence, despite the grain
friction on the cylinder sides, we predict that a pressure dis-
continuity propagates at speedas in the frictionless case
(1/A.=0); the effect of friction on the front is to exponen-

We have verified the validity of the above calculationstially damp the pressure discontinuity. Note that the dynamic

by comparing the analytical solutiofil6) with a direct
numerical integration of problentP). This numerical inte-
gration was done—starting from Eq§) and (5)—by using

damping length X at the front is larger than the static damp-
ing length\ of the Janssen modétf. Sec. I). Since pres-
sure is not continuous at= ct, we must distinguish between

a finite difference method, with a Lax-Wendroff algorithm the point of abscissa&=ct™ just behind the front where
[27,28. Note that this numerical scheme does not rely onp(x=ct™,t)=peexp(—x/2\), and the point of abscissa

the Green function method used to obtain Ef6). The

x=ct" just ahead of the front wheng(x=ct*,t)=0.
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FIG. 3. Dimensionless pressup& = p(x,t)/po, solution of Egs.
(5) and(7), as a function of the dimensionless abscisSax/\, at  gqs. (5) and (7), as a function of the dimensionless abscissa
three different timest=\/c (short dashed curyet=2\/c (solid x*=x/\, for three values of the timé: t=\/c (short dashed
c_urve, andt=4\/c (long dashed curye The discontinuities at the curve, t=2\/c (solid curve, andt=4x/c (long dashed curyeAs
right ends of the curves correspond to the pressure front. in Fig. 3, the sudden drops correspond to the speed discontinuity

due to the pressure front. At a given abscissa and after the pressure

front has passed, the velocity decreases and becomes negative as
Let us show that the pressure front corresponds also to @ne increases.

discontinuity in the grain velocity. The velocity can be cal-
culated directly from Eq(7),

FIG. 4. Dimensionless velocity* =v(x,t)pc/pg, solution of

assumed thab >0. The analytical solution that we found

v(X,t)=— iz Xﬁ_p(x, t)dx’ contradicts this assumption fort;. Our model and its ana-
' pc-leat ] Iytical solution are valid everywhere in the granular material

for t<tg, and only in the part of the granular material in

:ifcﬁﬁ_p(x, Hdx’ which v >0 for t>tg. Elsewhere, they must be modified.

pc?ly ot In order to understand what happens in the part of the

granular material in whiclh <0, we must analyze more pre-
_1 (X' =ct- 1)+ ifct‘&_p(x, Hdx cisely the role of friction forces. When a grain slice stops

pCp ' pc?ly ot (v=0) atx=x4(t), the friction applied on the slice by the

cylinder is not dynamic any more, but becomes static. The
—@ex;{ 3 C_t) N 1 fct’&_p(x, Hdx'. (18) solid friction laws do not determine the magnitude of this
~pc 2\)  pc? )y ot ' static friction force, but only require that it is inferior to the
magnitude the force would have if the slice were moving,
When the front arrives, the velocity jumps from
v(x=ct*,t)=0 to ov(x=ct™,t)=(py/pC)exp(—x/2\).
Moreover, numerical integrations of expressidis) and
(18) show that at a given point of abscissapressure and
velocity decrease with a characteristic time of a favc ~ Wherefg,is equal to the static friction force divided by the
after the jumps occurring at=x/c. This behavior is shown Vvolume of the grain slicefy, can be calculated with the
in F|gs 3 and 4, where pressure and Speed are p|otted agaiﬁgpmentum conservation law. If Condltldllg) is fulﬂ”ed,

the abscissa for t=\/c, 2\/c, and 4 /c. the slice that stopped stays at rest; if EtP) is not fulfilled,
the static friction force needed to maintain the slice at rest is

too large, and the slice motion must start again. To see if
friction is sufficient to maintain the grain slices at rest, we
Figure 4 shows that according to the analytical solutioncalculate the magnitude of the static friction>atxs, as-
(17), the velocity atx=0 becomes negative farlarger than  suming that grains definitively stop when the poxgtt) ar-
~3\/c. A precise numerical calculation shows that this ef-rives [hypothesis(H)], and then we check if this magnitude
fect starts at,=3.25\/c. Fort>t,, the velocity is negative verifies Eq.(19). If a grain slice definitively stops at a time
betweenx=0 and a point where=0. We will call the to, its pressure will not change any moretatt, and will
abscissa of this pointg(t); Fig. 4 shows that, for instance, keep the value it had at. This allows us to calculate the
Xs(t=4N/c)~1.9\. The grains ak>xg(t) still have a posi- ~pressurepg(x) of the grains that have stopped, by using the
tive speed. The points has a positive velocity, i.e., the re- analytical solution(17). The functionpg(x) is represented in
gion wherev <0 expands. However, this description cannotFig. 5 by a solid curve. The magnitude of static friction is
be valid, because in our equations we had assumed that dhen determined by the momentum conservation[lefwEg.
grains had a positive velocity: in E@5), the term—p/x ()]
represents the force acting on grains due to their friction on
the cylinder sidescf. Sec. Il)). This term is negative because dps

friction and velocity always have opposite directions, and we 0="3x * st (20

>~ |

: (19

If stad =

V. PROPAGATION OF A STOPPING FRONT
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FIG. 5. Dimensionless final pressure profile when grains have t

stopped,p? = ps(X)/po (solid curvg, and dimensionless pressure
profile of the Janssen modef = p;(x)/p, (dashed curve as func-
tions of the dimensionless abscissa=x/\.

FIG. 7. Dimensionless abscissa of the pressure front
x;f= Xpi(t)/N=ct/\ (dashed curve and of the stopping front
X3 =xq(t)/\ (solid curve, as functions of the dimensionless time
t* =tc/\. The grain slices at a place and a time represented by a
point above the two curves have not started to move yet; the slices
between the curves are moving; the slices below the curves have
already stopped.

Hence the conditiorf19) becomes

dpy
dx

Ps

=

<X

where p(x,t) is the analytical solutior(17). The function
ps(x) can be numerically calculated using E@1); this
function is plotted in Fig. Ssolid curve.

The stopping front starts fronmxk=0 at t=ty(x=0)
=3.25\/c. Figure 7 shows the pressure framthere grains
start to move and the stopping front positions as functions
of time. The stopping front tends to catch up with the pres-
sure front, but always remains behind it. In Fig. 7 the area
above the two curves corresponds to grains that the pressure
{ront has not reached yet{<x); their pressure is equal
o 0. Grains in the area in between the two curves
[xs(t)<x<ct] are moving with a positive velocity; their
Jpressure is given by the analytical solutitt?). The stop-
ping front has already reached the grains in the part below
the two curveq Xx<<x((t)]. These grains do not move any
more, and have a pressure equabix). Figure 8 represents
pressure against time at a given abscisséor x=\, 2\,
and 4\. For each curve the pressure is equal to zero until the
pressure front arrives(at t=x/c); it then jumps to
poexp(—x/2\), decreases during a time lag tfx) —x/c,

Hypothesis(H) is correct if this equation is verified. The
qguantity A/ psdps/dx is plotted in Fig. 6 as a function of;
its value always lies betweenl and+ 1. Hence hypothesis
(H) is correct, i.e., grains definitively stop &t x4(t).
Physically, the poinkg(t) corresponds to a stopping front
where the grain motion stops definitively, and this front
propagates to the positive direction. Grains behind this
front (x<xs) have already stopped, and grains ahead of i
(x>x,) are still moving. A grain slice located atstops at a
time t so thatx=x¢(t), or t=t,(x) wheret; is the inverse
function ofxs. After the slice has stopped, its pressure doe
not change any more, and is equal to

Ps(X) =p[X,ts(X)], (21)

10

12

X

*

and stops changing when the stopping front arrives at
t=t4(x). These three curves are horizontal sections of Fig. 7.
Pressure against the abscissa at a given timefor
t=MN/c, 4\N/c, and S\/c, is plotted in Fig. 9. The pressure
front is at the right end of the curves. These three curves are
vertical sections of Fig. 7.

The final pressure of grainpg(x) is plotted in Fig. 5
(solid curve. Let us compare it with the pressure profile
predicted by the Janssen model described in Sec. Il of the
present paper. With the boundary conditipfix=0)=pq
and when there is no gravity force, the Janssen model pre-
dicts that pressure is given ligee Eq(3)]

FIG. 6. [N/ps(X)]dps(x)/dx as a function of the dimensionless
abscissa* =x/\. This quantity always lies betweenl and+1,
so that static friction is sufficient to maintain the grain slices at rest
after they have stopped.

X
py(x)= poexF( _X> .

This function is represented by a dashed curve in Fig. 5.
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we did not. Hence pressure decreases more quickly in the
Janssen model. Despite this small difference of the damping
Faee lengths, our final pressure distribution and the Janssen one
~~~~~~~~ are quite similar. This result is a bit surprising since the two
~~~~~ models are different, our model taking into account both dy-
namic and static frictions. The final pressure distribution
ps(X) cannot be obtained by simply settidg/Jt=0 in Eq.
(8), since the friction term-(1/\)dp/dx is valid only when
- the grains are moving. Therefore, even if the functions
: ~< p;(x) andpg(x) are close, we emphasize that these two pres-
én} sure distributions are not identical.

o O O o o O
. . . . .

O BN W Oy

t VI. CONCLUSION

In order to understand the role of wall friction on acoustic
FIG. 8. Dimensionless pressup¥ = p(x,t)/pg, calculated by propagat!on in a granular medlu_m, we have r_nodeleq the
taking into account the stopping front, as a function of the dimen{Propagation Of, a pressure §tep in a cylinder filled with a
sionless timet* =tc/\, for three values of the abscissa X=X\ granular material. In the frictionless caseN#0), the pres-
(short dashed curyex=2A (solid curve, andx=4x (long dashed ~Sure front would propagate at the speed of sound, and would
curve. The sudden increases at the left ends of the curves happe#Pt be damped. All grains behind the front would move at a
when the pressure front arrives, and the sudden stops of the dethiform and constant speed. In the presence of solid friction
crease happen when the stopping front arrives. between the grains and the cylinder walls, we have shown
that a pressure front still propagates and that its speed is the
Note thatp,(x) decreases more quickly than dqeg¢x), but ~ same as in the frictionless case. Yet its amplitude is expo-
qualitatively the two curves are close. The best fipgfx)  nentially damped, and all grain slices move only during a

by an exponential function is limited time. The grain motion stops when a stopping front
arrives. This front propagates behind the pressure front; its
X speed is always larger than the speed of socndut ap-
Ps(X)~ poexp< —ﬁ) . proaches as the stopping front catches up with the pressure

front. Note that the stopping front is due to friction and does
not exist in the frictionless caseg(tends to infinity as fric-
tion goes to zerp The final pressure profile of grains that we

from the assumptions made about the static friction of grain redict when they have stopped is similar but not identical to_
e Janssen one. In all our study, we assumed that the elastic

at the cylinder sides: Eq20) (dp/dx=fg,) shows that the response of the material was lingae.,m=1 in Eq.(6)]. As

pressure along the cylinder decreases because of this friction: . :
a_consequence, the speed of sound in the material was a

Janssen assumed that this friction was maximum, whereas ; ; .
constant. Our conclusions should not be seriously affected if
nonlinear wave propagatid29] is incorporated. We plan to
* study this subject in the future.
p 0.8 In order to neglect reflections of the pressure step on the
’ “ right end of the cylinder, we assumed that the container was
semi-infinite. Let us assess the minimum length that the cyl-
inder should have in practice. We have shown that the pres-
sure of a grain slice at position was maximal when the
pressure front arrived, and was equal pgexp(—x/2\),
= whereh=~5R (R being the cylinder radiysExperimentally,
“““ ! reflections will be negligible if they happen in an area where
2 3 4 5 this maximal pressure is small comparedpig@ Hence the
X cylinder length should exceed 30 times its radius.
Let us end this paper by considering, from a practical
point of view, the filling of a vertical silo(we take into
FIG. 9. Dimensionless pressupe =p(x,t)/po, calculated by  account the grain weightWe assume that the granular ma-
ta_lking into aC(_:ount the stopping front, as a functiqn of the dimenyerial is poured with a constant ingoing fl@x This situation
sionless abscissa" =x/), for three values of the timé t=\/C g gimjlar to the one represented in Fig. 1, with a grain height
(short dashed curyet=4N/c (solid curvg, and t=5\/c (long increasing at a constant spe¥e Q/wR2. Let us now take

da.‘Shed curve The last two curves are identical fxﬁ<2_‘0 sINCeIN v —0 at the container's bottom, so that grains are located at
this part of both curves, grains have already stopped: dimensionless

pressure does not vary any more, and is equalittx). Note the _—Vtsx.glo. Let us t_ry to d(_atermlnp_(x,t) andv(x,t) dur-
small break of the slope occurring &t =3.4 in the long dashed ing the filling. The differential equations are
curvet=5)\/c; this break corresponds to the stopping front. A simi-

lar effect(hardly visible in the figureoccurs aix* =2.0 in the solid pcz‘?_v __ a_p

curvet=4\/c. X ot

The characteristic damping length pf(x), 1.3\, is a bit
larger than the damping length @f;(x), A. This comes

o
N
[
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and to zero, the grain compression goes on and the pressure in
the granular medium increases.
w__®_P, 22
Pt = ax x P9 @2 ACKNOWLEDGMENTS
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step propagation in a horizontal cylinder is the gravity term@n- We also want to thank C. Gay and M. b¢et for very
pg added in Eq(22). The friction term—p/\ in Eq. (22) is ~ useful comments.
again negative since the poured grains are progressively
compressed and we expect a positive velocity. The boundary APPENDIX A: GREEN'S FUNCTION
conditions are nowo(x=01)=0, and p(x=—Vt,t)=0: We shall determine the Green function of the linear dif-
grains that are being poured in the silo at the top of the}erential operator
granular material have a negligible pressure. Determining the
exact analytical solution of this model is a difficult math-
ematical problem. We do not expect any more that a stop- =2 2 -7
ping front propagates when the cylinder is filled with a con- c? gt? gx* N ox’
stant flux. We propose two different approximations for two | i
different regimes: a short time regime when the filling startsUSing standard methods of mathematical phy$4,25.
(t<\/V), and a long time regimet > \/V). In both regimes, The Green functiors(x,t) must satisfy the equation
the expressions g andv will be simplified, assuming that
V<c. LG=8(x) (1), (A1)
(i) In the short time regimet&\/V), the grain height in ) ) ) ]
the cylinder is smaller than the characteristic damping lengtihere 6 is the Dirac delta function. Let us define a new
\ of friction, and we can neglect the friction termp/x in  functionF(x,t) as
Eqg. (22). It is then easy to obtain

G(x,t).

X
F(x,t)=ex o

A
p(x,t<v> =pg(x+V1),
For F(x,t), the differential equatiofAl) becomes

A gV 2 2
v(x,t<— = (—-x). 159 _
\% C EZP a—xz+m F(X,t) 5(X)5(t)

The pressure is the same as in a liquid at rest. The speed d

. fad _ + oo a iaL
not depend on time, provided thatt<<A/V. Note that as OJFﬁe Fourier transforni (k,t) = J —.dxexp(-ikx)F(x) satis

expected, we have>0 sincex is negative. fies
(i) In the long time regimett>A/V) and in the frame .
moving up at the velocity/ with respect to the silo frame, 1 9%F , 1.
we expect that botip andv hardly depend on time, espe- 2 Tk W) F=4(1). (A2)

cially in the upper part of the granular material. So in the silo

frame we can try to find a solution of the following kind:

p(x,t)=p(x+Vt), and v(x,t)=v(x+Vt). Using the two The most general solution of the corresponding homoge-
partial differential equations and the boundary conditionsneous equation

we get
1 #°F, 1\,
A X+ Vt — | K2+ — =
p x,t>v>=pg)\ 1—exr<— N ” c? at? (k 4)\2>F° 0
is equal to
A9V X+ Vt
v X,t>v —?)\GX — X .

. 1
Fo(k,t)=a1(k)sin( \/ K2+ mct)
The pressure is a Janssen pressure distribution, shifted up

at the constant velocityy as the upper grain surface , 1
(x=—V1). Note that this expression for the velocity does +ap(k)co K"+ zCt)s
not exactly satisfy the boundary conditiox=0,t)=0, but
tends to satisfy it in the very long time limit.

What happens when we stop the ingoing flgxat a time
to after having poured a given height of grains? Work is still
in progress in order to determing(x,t>ty) and ~ R
v(Xx,t>ty). We expect that as the speed progressively tends Fpar= 0(1)Fo,

wherea, (k) anda,(k) are arbitrary functions. A particular
solution of Eqg.(A2) is given by
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where 0 is the Heaviside unit step function. We find that . c 1
Fparis a solution of Eq(A2) whena, anda, are given by F(k,t)= Nramr 0(t)sin< \V k2+mct>.
Returning to real space, we obtain

242

and a,(k)=0. c_ c’t —xz)
F(X,t)—é o(ct |X|)JO(T ,

C
ay (k)= ——
1) JKZE 1742

The solution of Eq(A2) which fulfills the causality condi- whereJ, is a Bessel function of the first kif@6]. Indeed it
tion is then given by is easy to verify that

Md o c’t’—x?| ¢ +ctd " c’t?—x?
f ) xexp(—i X)E f(ct—1|x])Jo o 73 H(t)J’_Ct xexp(—ikx)J o

6(t)JCtd €100 ( c2t2—x2) - sin( Vk?+ 1/4\%ct)
=c xcogkx)Jg| ———|=c .
0 o 2 JKZ+ 1742
See Ref[30] for the last step. In conclusion, for the linear differential operatothe Green function is given by
c X N
G(X,t)zz 0(ct—|x|)exr{—ﬁ)\]0 T .

APPENDIX B: SOLUTION OF THE CAUCHY PROBLEM

Let us consider the differential equation

We assume we know(x,t=0) and @pc/dt)(x,t=0), and we want to determing:(x,t=0) (i.e., we want to solve the
Cauchy problem for this differential equatjorwe have shown that the solution is equal to the convolution product

pPc(X,t=0)=A(X,t)* G(x,t),

where

1
A(X,t) = EZ

Jd
(1) %(x,h 0)+ 68 (H)pe(x,t= 0)},

Cc X
G(X,t)ZE 0(ct—|x|)ex;(—§)\]0 N

We shall calculate this convolution product. In order to shorten the mathematical expressions, we shall{efirsnd
uy(x) by

- =0) and _ 2 e 1=0
Uo(X)= zzPc(X,1=0) ~and uy(x)= =z ——=(x,t=0).
Let us calculate the first paR; of the convolution product
+ oo + o
P1=[5(t)ul(x)]*G(x,t)=J dx’f dt’ s(t")u (X' )G(x—x"t—t")

x—x’)J ( \/cztz—(x—x')2>
0

C[+=
:EJ',W dx'uy(x’) 8(ct—|x—x |)exp{— o N

x’—xJ ct’—(x’ —x)?
2\ 70 2\ '

c x+ct
== ﬁ(t)f dx’ul(x’)exp<
2 X—ct
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The second par®, of the convolution product is equal to
+

o0 + o0 a
P2=[5’(t)u0(x)]*G(x,t)=f dx’f dt’5’(t—t')uo(x—x’)G(x’,t’)=E{[é(t)uo(x)]*G(x,t)}.

—o0 —oo

By using the expression d?;, we obtain

x’—x)J <m>]
0

JdlcC x+ct
Pz—ﬁ Ea(t)fx_ctdx Ug(X")ex X ox

X+C r_ 2 J 1/2\ 242 ' y\2
_; 0(t)f tdx’uo(x’)exr<x x)c t JL((1/2\) Jeete— (X' —x)%)
X—ct

2n ) 2n 2= (x —x)2

+Czt9t
5 6(0)

ct ct
Ug(x+ct)ex N +Uug(x—ct)exp — /|
To derive the last expression, we used the formula
Jo(0)=1 and Jo(x)=—Jx(x),

whereJ;(x) is a Bessel function of the first kin@6]. The solution of the Cauchy problem is finally given by

=0 1 X+ctd dpc 0 X' —X ] c’t?—(x' —x)?
=0)= — —=
Pc(x,t=0)= 5 X Jexg ——|Jo N

Cct [x+tct
_KJ Ctdx pc(x',0)

p(x'—x)Jl<<1/zwm> 1 I (-
Xexp = —0)? +3 pc(x+ct,0)ex EIN + pc(x—ct,0)ex ol |

APPENDIX C: A SIMPLE EXPRESSION FOR THE PRESSURE

In our water hammer model for a granular material, the grain pressure is given by

0 ct
+ pc(x—ct,0)ex LN

et x+ctd , ‘o F{x’—x)\]1((1/2}\)\/citi—(x’—x)z)
AN x—ct X pC(X ’ )ex 2\ ,—Tht —(X/—X) ’

1 ct
p(x,t=0)=po+ 3 Pc(X+ ct,O)exp(ﬁ

where

X
poex%—x) if x<0
pC(XIO):
—po If x>0.

We shall simplify this expression fdex/c,

ct N ct—x ct
ex x ex N ex 5

X
p(x,t> E) =PoT b

+c ’ 2 v/
th tdx’pc(x’+x,0)exr{x )Jl((ll \) V22 —x'?)

A

2 —ct 2\ c’t’—x'?
oo 1 ct x|, ct fﬁxd , X' +X x" ) J1((L/22) 22— x"?)
=po > 5| | ex N PoZy w X' ex LR N
Jctd , p( X"\ 3 ((L/2\)\e?t?—x'?) -
| dxexp o e . (C)
In order to shorten the mathematical expressions, we define the following dimensionless quantities:
ct X d v X'
T= ﬁ' X= 5, and y _ﬁ'



5772 T. BOUTREUX, E. RAPHAEF_, AND P. G. de GENNES 55
Then the equalitfC1) can be rewritten
PO, 7= x) p( 7) J N ) ’2) J 1(VT -x'%)
=1+ exp(—2 1—— dyx'exp(—2xy—x dy'exp(x’
f 1(\/7 -X')
dx'expx’ —
NT —X
1 exp(7) ) 1 Tf*)(d , , L Ja( ™—x'?)
=1+ ——lexp(—20)-1]- 5 dx’exp—x)lexp(y+x)+exp—x—x )]W
+7 ‘/72 12
+If dy'expx' ) ————— Il X ).
2)_ /T X12

The last expression gf/pg is a sum of three terms. Let us
call them successively;, T,, andTs;. Let us first simplify
the termT,,

(N =x"?)
T:—f dy'ex cosh y+ Iy
T x'exp(—x)coshix+x' ) ——=—— N
1 Ji(my1- Z)
=—r1exp — dzcoshzr—
rexp(—x) | | dacostizr—x) = —r—
Then the ternil5 is equal to
2 [ aprou AT
=— ex e
3 2 _, X X /—ﬁT _X,
—r [y costn T LT X
=
=cosh7)—1.

See Ref[30] for the last derivation. The sum of the terms
T, andTj is

exp T
T1+T3:1+ g )

[exp(—2x)—1]+coshr)—1

=exp(— x)cosh{7—x).

Hencep(x,7=x) is given by

P(x,7= x) = PoeXp(— x)| cosi7— x)
1 d r( ) 1(’7'\1 Z ‘|
T " coshzr—x N

Using the quantities with dimensiong(x,t=x/c) is finally
given by

>x _ X ct—x ct
p X,t/E =Pe€X T oN cos on | ox
1 r(zct—x Ji((ct/2n)V1—2%)
xj dzcos .
xlct 2\ \/l—Z2
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